“Both Hegel and Marx believed that the evolution of human societies was not open-ended, but would end when mankind had achieved a form of society that satisfied its deepest and most fundamental longings…” Francis Fukuyama, The End of History and the Last Man
Exponential advances in technology promise a future utopian world of abundance. Yet, there is a growing realisation that the biggest question in technology is about who is in control. Politics, not economics, is ultimately what makes the world go round. Whatever your political affiliation, Lenin seemed to get this one right when he said that the crucial question in politics is “who will overtake whom?”. As coined by the term, Who, Whom?
From the actions of the cloud giants and social media platforms in response to the storming of the Capitol to the Canadian legislation to restrict access to financial services for anyone directly or "indirectly" supporting the trucker protests, supply chain resilience, to... Ukraine.
Access to resources always has a political element. And how we govern our fundamental resources is one of the most critical questions of our times.
“if the priority for an increasing number of citizens, companies, and countries is to escape centralization, then the answer will not be competing centralized entities, but rather a return to open protocols… open alternatives that are perhaps not as full-featured and easy-to-use as big tech offerings, at least in the short to medium-term, but possess the killer feature of not having a San Francisco kill-switch.” Ben Thompson, Internet 3.0 and the Beginning of (Tech) History
The opportunity for DAOs lies with the ability to leverage a blockchain as a neutral, independent monitoring and enforcement mechanism that can recognise the contribution and governance rights of much larger groups of stakeholders without exponentially increasing coordination costs.
DAOs provide the organisational form necessary to govern shared fundamental resources. The real question, therefore, is, what fundamental resources do we need to focus on sharing?
In 2020, data scientists used machine learning (ML) technology to help make diagnoses and aid researchers in developing a cure for COVID-19. And DeepMind just published a paper in Nature about using deep learning, a subfield of ML, to improve a vital component of some approaches to nuclear fusion.
However, applications of ML to nuclear fusion research and vaccine developments are just the tip of the iceberg, with further applications at the heart of innovations in self-driving cars, natural language processing, silicon chip design, and so much more.
Yet, while there has been significant progress in ML research and applications, OpenAI’s analysis shows that the amount of compute used in the largest AI training runs has increased exponentially, doubling every 3-4 months; compared to Moore’s Law, which doubles every two years.
Source: OpenAI
Those running ML research outside of the major tech giants are left with few good options, relying on expensive cloud providers such as AWS for spot cloud compute or racking GPUs themselves to complete this work. Such ever-increasing computing demands for ML projects is the reason why established global tech giants run most large scale AI projects.
When you look closer, it becomes clear that much of the problems we see with AI compute boil down to a coordination problem as the supply is artificially constrained. Enormous GPU pools currently mine Eth1 and other PoW protocols while on-premises data centres have average server utilisations rates are often between 12 to 18%, cloud server utilisation is approximately 65%, personal computers sit idle, mobile phones have huge potential for overnight utilisation, and blockchain miners have massively underutilised expensive hardware equipment.
All in all, we see three major problems overhanging the future of ML research and development:
Thankfully, Web3 now provides us with the tools to 1) coordinate and incentivise compute providers across the globe who don’t have to trust each other, 2) create a democratic and permissionless governance structure around fundamental infrastructure, and 3) directly incentivise collaboration amongst researchers.
Ark Invest estimates that AI hardware companies could produce $1.7 trillion in annual revenue by 2030, roughly 100x today’s figure.
What will such a vast market look like in 8 years’ time? And how will access to AI compute be governed? Further, will there be a mandate to keep costs affordable for researchers working outside of the biggest companies?
With all this in mind, the long-term vision of Gensyn is to “enable anyone to train ML models for any task using a self-organising network that encompasses every source of compute power in existence”.
As Gensyn connects processing units directly to the demand side, these infrastructure providers - “Solvers” in Gensyn parlance - receive revenue for training deep learning models that they select from a mempool of requested jobs.
If a solver sees demand on the network increasing or the price for compute increasing, they’ll know it’s a great time to spin up more infrastructure, and the same works vice versa. These price signals - the market’s “invisible hand” - guide participants in Gensyn to deliver (or not to deliver) what the marketplace requires.
Leveraging the global supply of compute enables Gensyn to deliver compute at a scale that simply isn’t possible for centralised alternatives. Less powerful machines maintain the Gensyn network too. While powerful GPUs or TPUs take up positions as off-chain solvers, less powerful CPUs are used to run blockchain nodes and maintain on-chain consensus.
Without any human intermediary, Gensyn’s protocol takes payment from researchers for the machine learning tasks they request and distributes rewards to solvers for their work done.
Gensyn’s open protocol-based approach to delivering ML compute can deliver compute at a fraction of the cost of centralised cloud providers. For example, existing solutions such as AWS spot compute cost around $0.9 per hour, AWS on-demand at $2 per hour and more generalised crypto native solutions such as Golem cost up to $1.2 per hour.
Source: Competitor analysis Gensyn Litepaper
The Gensyn network is open to anyone, allowing infrastructure owners anywhere in the world to earn revenue for performing compute tasks in the network while having the opportunity to become an owner of the network for doing so.
Similarly, the Gensyn Protocol will have no kill switch or centralised party who can censor work completed by the network. The Gensyn Protocol has no political bias supporting anyone who wishes to use the protocol - from hobbyist researchers to academics, large scale corporates and even nation-states.
At maturity, the Gensyn Protocol will be owned and operated by its core stakeholders: infrastructure providers, researchers, technologists, protocol politicians, not directors motivated to maximise shareholder profits.
A protocol with a sole vision of enabling anyone to train ML models for any task has coordination at its heart. And if greater collaboration is necessary to unlock the next advances in AI, then Gensyn as a credibly neutral platform owned and operated by AI researchers and infra providers is most likely to be the player with the extrinsic (financial) and intrinsic (culture and values) incentives to do so.
One of the well-known challenges in building any decentralised network for compute is the difficulty of verifying that this work has been completed correctly by the network. While more general-purpose computation networks like Golem use a more naive solution to this problem by simply having one or more additional parties replicate the work. However, this solution fails to solve the problem as it not only fails to scale but is also inefficient and increases the cost of providing the service.
The Gensyn protocol incorporates three key concepts to solve this replication problem.
The first is Gensyn’s “probabilistic proof-of-learning” verification method which uses the metadata from gradient-based optimisation processes to form a receipt for work completed, similar to a “Proof of Relay” in Pocket.
Source: Initial research into the novel verification system Gensyn Litepaper
For the second Gensyn incorporates “graph-based pinpoint protocol”, which utilises a graph-based pinpoint protocol and cross-evaluator consistency execution to allow work to be re-run and compared for consistency and confirmed with the on-chain record.
For the third concept to keep all actors economically aligned, a “Truebit Style Incentive Game” is incorporated using staking and slashing to ensure all actors are financially motivated to complete all of their aligned work honestly and correctly. This process allows for quick verification through replicating certain portions of the finished work, similar to the way Broadcasters may check individual segments in Livepeer to ensure they were encoded correctly.
Within the Gensyn Protocol, there are four types of participants:
Each of these participants play a key role in ensuring work submitted to the network is completed and verified while keeping everyone honest. Tasks completed by the network can be broken down into five phases.
It is through the elegance of Gensyn’s design that these tasks can be performed in a decentralised network with minimal redundancy in the process.
Post-launch, Gensyn will be able to leverage network effects around its new incentivised network for ML compute. Two-sided marketplace network effects will result directly from increased usage of the network and a growing pool of network fees for the supply-side to earn. This will attract additional infrastructure providers to the network, improving the supply-side of the network by increasing the capacity of the network, which should, in turn, lower costs and incentivise further usage from the demand-side.
As the Gensyn protocol scales - and after the project has fully exited to the community - governance of the Gensyn Protocol will become increasingly critical. Stakeholders will be mandated with the task of ensuring Gensyn remains true to its mission of enabling "anyone to train ML models for any task using a self-organising network that encompasses every source of compute power in existence” - a truly credibly neutral platform for ML compute.
We believe that Gensyn provides the technical substrate, financial incentives, and intrinsic collaborative open-source values necessary to empower new businesses and research simply not possible for the public in the centralised world of today.
Disclosure: Eden Block is an investor in Gensyn
Nothing contained herein constitutes investment, legal, tax or other advice nor is to be relied upon in making an investment or other decision. This presentation contains the opinions of the author, and such opinions are subject to change without notice. Furthermore, it may also include data and opinions derived from third party sources. Eden Block does not accept liability for the accuracy or completeness of any such information or opinions which can be subject to change without notice.